Applying Distributed Computin
to an EM Application in a
UNIX Environment

by Brian B. Luu

%

ARL-TR-958 May 1996

0960617 093

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

REPORT DOCUMENTATION PAGE Do Ao 68

Public reporting burden for this coliection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefterson
Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank} 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1996 Final, Sept.1993 to Oct.1994
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Applying Distributed Computing to an EM Application in a UNIX PE: 62120
Environment '
6. AUTHOR(S)
Brian B. Luu
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory REPORT NUMBER
Attn: AMSRL-WT-MD ARL-TR-958
2800 Powder Mill Road
Adelphi, MD 20783-1197
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197
11. SUPPLEMENTARY NOTES
AMS code: 612120.1400011
ARL PR: 4FE7E3
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A distributed computing technique (DCT) in a network of 15 UNIX workstations is described and
benchmark times given for a particular electromagnetic (EM) analysis application. The results demon-
strate that the technique substantially improved the turnaround time for execution compared to a
single processor system. Extension to an arbitrary network of processors and other applications is
discussed in general. The technique is easily implemented and should be considered when a network
of processors with a file server capability is available.

14. SUBJECT TERMS 15. NUMBER OF PAGES
distributed computing, computer performance, UNIX, file server 6. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 233-18
298-102

Contents
T, INErOAUCHION c.ovoveii et s
2. ENVIFONMENT ..ottt s
3. TeChNIQUE c.covei e
3.1 DAtA POOL Fileooveeeeeeeiueeeieiieniieeieeiesee e seeeinensasassness e sanesas b e s e
3.2 INAEX FIlE oottt s et sa e
3.3 GetiNA FUNCHIONoouviiiiiiiieieiiiiiete e
4. AIGOTItRIN ..o
5. Performance, Problems, and DiscusSion ...
5.1 PerfOrmanceoococriimeeeeeeeciiiiiiniite ettt s
5.2 PTODIEILS ...ttt eeeceirteit ettt e
5.3 DUSCUSSIOMN «.vvveeeueeieeeeeeieeeeeeeseireeseteeeeeeeessrar e s sr e e s st eeseanes e basaataaasssbeesenresans
6. CONCIUSION ..ottt
DISHIDULION ..ot
Appendices
A. Application Program Listing ...
B. LINPACK Benchmarking of Workstations ...
C. Application Benchmarking of Workstations ...,
Figure
1. Electromagnetic Effects Modeling System (EeMS)ccoocovvniiinncinnnnnce
Table
1. Summary of benchmarks and comparisonsccccecverieninsininnnncncncnceans

................................

1. Introduction

The improvement of microprocessor speed and network connectivity has
made data processing on microprocessor workstations more efficient and
economical. With the maturity of operating systems and network software,
it becomes feasible to distribute the required processing to individual
workstations or personal computers that are networked together to
achieve concurrent processing and reduce turnaround time. This report
describes a distributed computing technique (DCT) employed in a UNIX
system environment.

2. Environment

Figure 1.
Electromagnetic
Effects Modeling
System (EeMS).

First, let’s examine the system architecture in question, which accommo-
dates distributed computing. Fifteen RISC (reduced instruction set chip)
workstations make up the hardware. They are configured and tuned for
engineering, scientific, and graphic applications. As depicted in figure 1,
all workstations are networked together by an Ethernet™ local area net-
work (LAN) operating with a data rate of 10 Mbits/s and a gateway to the
Adelphi Local Area Digital Data Interchange Network (ALADDIN) at the
Army Research Laboratory (ARL) and to the Defense Research Engineer-
ing Network (DREN). The workstations include three SGI Power IRIS4D/
440 systems (with four processors each), nine SGI Personal IRIS 4D/35 sys-
tems, two IBM Power Stations RS/6000-560, and one IBM Power Station
RS/6000-530. This hardware makes up the main part of the system, called
the Electromagnetic Effects Modeling System (EeMS), which was designed

ObaseT
Ethernet

Aladdin
(ALC
facility

Engineering
Network

10baseT
HUB
Ethernet

vvvvvvvvv

FDDI = fiber distributed data interface
SO = serial optical channel converter network

to provide fast engineering workstations at the desks of certain scientists
and engineers (S&Es) at ARL. All workstations run variations of the
UNIX™ operating system (SGI IRIX™ and IBM AIX™) and use the TCP/
IP protocol for networking. (Both IRIX and AIX are derivatives of AT&T
UNIX and Berkeley UNIX.)

The total disk space in the EeMS is 50 gigabytes. Using the Network File
System (NFS™) software and with a special arrangement of file systems,
users can access their files from any system in the EeMS with the same file
path. For example, say a user (user1) has a data file on the “emsal” system
with the file path /home/emsal/userl/datafile: even when logged into
another system (say, “emsc5”), that user can access that data file on emsal
with the same file path: /home/emsal/userl/datafile.

Automount, a feature of NFS, is used to reduce network traffic. The
automount feature will mount remote file systems when they are needed.
When the file systems are not used for a specific time (specified by the sys-
tem administrator), automount will unmount the remote file systems.
With this arrangement, users’ application programs can access all users’
files in the EeMS using the same file path from any system in the EeMS.

Network Information Service (NIS™) software is employed to provide ev-
ery user a unique user identification (uid) on every workstation in the
EeMS. This special arrangement of unique uids for users of the EeMS has
alleviated problems associated with authentication and authorization of
reading, writing, and executing users’ files and programs but still main-
tained the necessary security for the operation of the EeMS.

3. Technique

By taking advantage of services provided by NFS and NIS software and
the special design and arrangement of file systems, the computer environ-
ment of the EeMS enables and facilitates distributed processing among all
EeMS processors. A distributed computing technique was implemented to
concurrently process information on all workstations of the EeMS. The
technique requires the following components:

* data pool file,
¢ index file, and

* getind function (for providing an index for the next available data set).

3.1 Data Pool File

The data pool file is a collection of the input data needed by DCT processes
to compute a result. A process is a program submitted to a processor for
execution. The input data should be grouped into sets (or records) and
must be quantifiable. Each data set is the smallest amount of input data

]

3.2

3.3

needed to produce a result. The data pool file must be accessible to all DCT
processes, either through a local file system or a remote file system.

Index File

The index file contains the index number of the last used data set in the
data pool file, as well as flags to signal all DCT processes or certain DCT
processes at certain hosts to terminate. The index file must also be acces-
sible to all DCT processes, either as a local file or through a network-
remote file. While the index file is being accessed, the calling process must
lock the index file by using a software lock mechanism, such as NFS lock, a
feature provided in the UNIX NFS. When the calling process locks the in-
dex file, it has the exclusive right to write and modify the index file. When
another calling process tries to lock an index file that is already locked, the
calling process will be put on hold until a predefined time is up, and then
it will terminate.

An example of the contents of the index file is

124 0
emsal.arl.mil 3
emsc2.arl.mil 1

The first number of the first line is the index of the last used data set in the
data pool file. The second number on the same line is the all-process-
terminating flag, which signals all processes to terminate. The value of 1
for the all-process-terminating flag means “terminate,” and the value of 0
means “proceed.” Any lines after the first line are the host-process-
terminating flags, which have the format of a hostname and number of
processes. The process that is executed by the host system matching the
hostname of the host-process-terminating flags will decrement by 1 the
number of processes in this line and terminate. The number of processes
can be greater than 1, because some host systems can execute more than
one process on the DCT. For example, the emsal system has four proces-
sors, so it can launch four processes to execute four data sets at the same
time. The index file can be manually modified so that the terminating flags
are set. During the manual modification process, the index file should be
locked.

getind Function

The purpose of the getind function is to provide the index to the next avail-
able data set in the data pool file and also to interpret the terminating flags
set in the index file. The getind function will first try to lock the index file.
Each time it fails to lock the index file, it will wait for a preset period and
then try to lock again. If the number of tries exceeds the preset number, the
getind function will quit and signal the process to terminate. After success-
fully locking the index file, the getind function checks the last used index
for end-of-record and terminating flags. If all the terminating conditions
are negative or not applicable to the calling process, then the getind func-

tion will increase the index value to the next available index value, update
the index file, and return the next available index value to the calling
process. Upon returning to the calling process, the getind function unlocks
the index file.

An example of the input parameters of the getind function, listed in appen-
dix A, is as follows:

¢ the maximum number of input data sets,
¢ theindex file name,
¢ the hostname of the calling process.

Written in C language, this getind function used the “include” files
unistd.h and fentlh. The getind function will try to lock the index file 25
times. Each time it fails, it will sleep for 5 s or less and retry again, for a to-
tal of 25 attempts (this can be varied depending on the user’s require-
ments). If a hostname of the calling process appears on any of the host-
process-terminating flags, then the getind function will decrement by 1 the
number of processes and return a flag value of -2, to inform the calling
process to terminate. After this decrement, if the number of processes is 0,
then the getind function will remove this line. The getind function will re-
turn the value of the index of the next available data set, a value of 0 (if the
index number reaches the maximum index number), or a value of -1 (if the
all-process-terminating flag value is 1).

4. Algorithm

For implementation, this distributed computing technique requires the fol-
lowing arrangement:

* The index file and data pool file must be accessible to the DCT processes.
The application program should be able to determine the number of data
sets contained in the data pool file.

¢ There must be a software lock mechanism, such as NFS lock, to inform or
prevent other processes from modifying the index file while a process is
using it. The file lock mechanism should work across the network and also
in a heterogeneous system environment, consisting of systems from differ-
ent vendors.

* The application program should be structured in such a way that each run
of a data set yields a result. The execution of one data set sr:ould be inde-
pendent of the execution of any other data set in the data pool.

In order to obtain an input data set for execution, the application program
will invoke the getind function to obtain the index of the next available
data set in the data pool file. To use the DCT, the user will start or submit
the application program on all available systems.

5. Performance, Problems, and Discussion

5.1 Performance

In an effort to speed up turnaround time, the technique described here was
incorporated into an application program (listed in app A) used to com-
pute the electric and magnetic field of a point in space radiated by an elec-
tromagnetic pulse (EMP) simulator.! In this case, a data set is the coordi-
nate of the point in space. The DCT used all processors in the EeMS: 12
processors in three SGI 4D/440 systems, 9 processors in nine SGI 4D/35
systems, 2 processors in two IBM RS/6000-560 systems, and 1 processor in
an IBM RS/6000-530 system. All parts of this program were written in C
programming language.

Table 1 summarizes and allows comparison of the performance for this
specific EM application using the DCT. Column 2 refers to the LINPACK
benchmark for the normal mode of system operation. The Mflops bench-
mark is based on the LINPACK code of 200x200 array elements. The
LINPACK code was linpack.c, retrieved from the netlib.att.com machine
on the Internet. The LINPACK benchmark in C programming language
was used, since the EM application was written in the C language (for
more details, see app B). The execution time required to calculate the EM
fields for one data set is shown in column 3. The average execution time
for one run is based on the average execution time of three typical observa-
tion points. All the execution times referred to here are based on the nor-
mal operation of systems in the EeMS and assume that few or no other us-
ers’ processes were using the systems beside these distributed computing
processes. See appendix C for more details. Column 4 shows the applica-
tion benchmark times normalized to the performance of the SGI 4D/35
system, the slowest system in the EeMS. The estimated execution time re-
quired to calculate the EM fields at 1000 observation points is shown in the
last column. For this particular application, use of the DCT provides a re-
duction in execution time of almost a factor of 10 compared to an IBM RS/

560.
Table 1. Summary of System LINPACK Average Comparison Estimated
benchnfarks and benchmark execution toSGI4D/35 execution
comparisons. (Mflops) time for 1 system time for 1000
data set data sets
(hh:mmuss) (days)
SGI4D/35 3.88 10:39:25 1.00000 445
SGI4D/440 433 9:44:28 1.09402 406
IBM RS/530 11.69 7:39:45 1.39079 320
IBM RS/560 22.80 3:47:52 2.80610 159
15 systems N/A N/A 29.13120 16
with DCT

I Brian B. Luu and Calvin D. Le, AESOP Field Prediction, Army Research Laboratory, ARL-TR-835
(November 1995)

10

5.2

5.3

Problems

For the heterogeneous system environment, the data format incompatibil-
ity of the index and data pool file can prevent systems from different ven-
dors from correctly reading and processing the data sets. For example,
DECstation 5000 can read the index file (since the index file is in ASCII),
but it cannot correctly read the data in the data pool file, because the data
pool file is in the binary floating point format for the SGI and IBM systems
in the EeMS. A common data format (e.g., ASCII) for all systems should be
used for the data pool file, the index file, and also the result data file. Oth-
erwise, special input/output functions must be written for an application
program to handle incompatible data formats.

During the course of execution, the systems that provide file server service
for the index and data pool file must be operating at all times to provide
the indexes and data sets for processes to execute. A power failure will dis-
rupt the distributed computing process—especially a power failure to sys-
tems that provide the NFS services for the index and data pool file. The ter-
minating flags in the index file can be used to properly terminate the
processes if a power shutdown is expected or planned. If a power failure
improperly terminates the distributed computing processes, the informa-
tion in the index file will be used to restart the DCT process at the last un-
processed index data sets. Indexing of input data along with the DCT has
saved the execution time that would be required to rerun data sets already
completed. Using uninterruptible power supplies (UPSs) can mitigate un-
expected power failures for systems. Note that the UPS for systems that
provide the network services (such as the bridge, router, and NFS file serv-
ers for the index and data pool file) should outlast the UPSs for other
systems.

Discussion

If all the results are not urgently needed, a lower priority can be set for the
DCT processes so that the impact on other users’ jobs is minimized. With a
low execution priority status, the DCT processes will be put in a waiting
queue or use a low proportion of CPU cycles compared to other users’
processes with normal priority. But in the evening, when there are few or
no other users’ jobs running, the DCT processes will use all the available
CPU cycles.

With the termination controls in the index file, the DCT offers flexibility for
participating systems. Not all 15 systems of the EeMS have to be active at
all times for the DCT. Some systems can be released from the DCT and re-
activated at a later time. More systems participating in the DCT will result
in shorter completion time for all the input data sets.

To alter the course of the DCT (e.g., terminating some or all distributed
computing processes) without incurring improper termination, a lead time
is needed. An adequate lead time requires an amount of time that is equal
to or greater than the amount of execution time for one data set on the

slowest system. But this required lead time can be longer, depending on
the CPU load of the slowest system at that time.

Many factors contribute to an uncertainty in the prediction of the comple-
tion time of the DCT process. The uncontrollable factors are CPU load, net-
work speed, network traffic, and unexpected events (e.g., power failure,
system failure). But the amount of execution time for one data set on the
slowest system is the determining factor in this uncertainty.

For maximum benefit from the DCT, the minimum number of data sets in-
volved should be greater than the sum of the performance times normal-
ized to the performance time of the slowest processor (as illustrated in col-
umn 4 of table 1) of the participating processors. Obviously, the minimum
number of data sets should be greater than the number of processors. For
example, for the maximum benefit of using DCT on all systems in the
EeMS, the minimum number of data sets in this application should be 29.
But for the DCT performed on one processor of an SGI 4D/35, one proces-
sor of an SGI 4D /440, one processor of an IBM RS/530, and one processor
of an IBM RS/560, the minimum number of data sets should be 6.

6. Conclusion

As implemented and tested, this distributed computing technique has
demonstrated its utility for applications in which a large task can be di-
vided into many small tasks, and each small task executed independently
on any available system on the network. Usually, these large applications,
as in electromagnetics or acoustics, require supercomputer capability,
which has very limited flexibility. The distributed computing technique is
suitable for a system environment consisting of microprocessor worksta-
tions networked together. This type of system environment is now emerg-
ing in the industry: for example, networking of personal computer (PC)
Pentium workstations that are equipped with high-level operating sys-
tems and network software. This environment is inexpensive and flexible,
requires less system administration, and eliminates the chance of single fo-
cal operation failure, which could happen on a centralized system environ-
ment like a mainframe or multiprocessor supercomputer. The fundamen-
tal requirements to implement the distributed computing technique are a
network of systems and file server capability.

11

Appendix A. Application Program Listing

/* program clob.c

date: 24 Jan 1995

Author: Brian B. Luu

Description: This C programming code will read in XYZ coordinates of points
in space and compute the estimated electric and magnetic field radiated by AESOP
(Army Electromagnetic Pulse Simulator Operation) at these locations.

The coefficents of the current distribution on each dipole segment
are precomputed and saved in a file which is hardcoded in the program with the
file name “/home/emsc3/bluu/aesop/CUCOEF.DATA".

All the input and output formats of the program are in SGI-IRIX or

IBM-AIX binary-floating-point format except the “data pool” file which is in ASCII.

*/

#include <stdio.h>

#include <math.h>

#define MAXT 2000
#define MAXEH 16008
#define MAXS 14978
#define MAXSH 10040
#define MAXCO 299580
#define MAXS2 29956

double cuc, cup;
double co[MAXCO];
double tcrs, sn0, snl, rn0, rnl;

main(int argc, char *argv([]) /* Main program */
{
/* Initialized data */

char spc;

char dscuco([]="/home/emsc3/bluu/aesop/CUCOEF.DATA”;
char findex([100], hn[64}];

char dseht([160}="mkdir *;

struct { double hdd[24]; int hdi(8]; } hdr;

int i, ib;

int it, its;

int is, isb, isl, isgx, isgz:;
int isgl[4};

int *itm=hdr.hdi;

int index, nds, nrun=0;

double c=3.e8;

double dt=1.e-9;

double dlmin=l.e-2;
double al=20.;

double oxt=100.4, ozt=al;

13

Appendix A

double sax=47.5, saz=13.5;

double cucc=2.73448e-13;

double cul=4.07e-9;

double cur=.005364;

double dl, zoodpi, pi;

double cosa, sina, sa;

double eh[MAXEH];

double rs(4], rl[4], ros[4}, rot[4];
double tr, tehs, retard, etc, htc, cu, cud, cvo, tcs;
double *ro=&hdr.hdd[1l]:;

double *ehm=&hdr.hdd{161};

double air, rlp2, rlp3, xor, xorp2;

register double *dp;
FILE *fp, *fpd;

size_t sizeof_double=sizeof (double);
size_t sizeof_eh=sizeof(eh);

size_t sizeof_hdr=sizeof (hdr);
extern void exit(int);

extern int current(int , double, double *, double *, double *);

extern int getind(int, char *, char *);

cup = sgrt{cul * cucc);

cuc = cur / (sgrt(cul / cucc) * 2.);
/* INITIALIZE PARAMETERS */

pi = atan(l.) * 4.;

zoodpi = ¢ * le-7;

rs(1l] = 0.;

sa = sqgrt(sax * sax + saz * saz);
cosa = sax / sa;

sina = saz / sa;
/* OBTAIN X&Z SWITCH DATAPOOL FILENAME AND INDEX FILENAME */

if (argc < 4)
{
printf ("Not enough data: no switch number or seperate character or \
datapool filename.\n”);
exit(3);
}
else
{
switch (argv{1]1(0})

{
case ‘1°':
{
isg[0] = 1;
isgl(1) = 1;

14

Appendix A

break;
case ‘2':
{
isgl[0] = -1;
isgll] = -1;
}
break;
case ‘3':
{
isg(0] = 1;
isg(l] = -1;
}
break;
default:
{
printf(“%c: invalid input for x switch; \
must be 1, 2, or 3\n”, argv[1l][0]});
exit(1);

}
switch (argv(1}(1])
{
case ‘1°‘:
{
isg2] = 1;
isg[3] = 1;
}
break;
case ‘2':
{
isgl2] = -1;
isg(3] = -1;
}
break:;
case ‘3':
{
isgf(2] = 1;
isgl[3] = -1;
}
break;
default:
{
printf(“%c: invalid input for z switch; \
must be 1, 2, or 3\n”, argv[1]I[1l]);
exit(1l);

air (argv([1]}[0] - ‘07)*10 + (argv[1l][1l) - *07);
spc = argv(2]11(0];
strcat (strcpy(findex, argv[3]), “.ind");
if ((fp=fopen(findex, “r”)) == NULL)
{
if ((fp=fopen(findex, “r”)) == NULL)

15

Appendix A

/*

/*

/*

/*

16

fp=fopen(findex, “w");
fprintf(fp, *%$10d4 %5d4\n”, 0, 0);

}
fclose(fp);

READ IN CURRENT COEFFICIENTS OF ALL SEGMENTS */
fp = fopen(dscuco,“r"); '
for (i = 1, dp = co+20; i <= MAXS; ++i, dp += 20) {

fscanf (fp, “%$*d %$le %le %le %$le %le %le %$le %le %$le %le \

$le %le %le %le %le %le %le %le %le %le”,

dp, dp+l, dp+2, dp+3, dp+4, dp+5, dp+6, dp+7, dp+8, dp+9,

dp+10, dp+1l, dp+12, dp+13, dp+14, dp+15, dp+16, dp+17, dp+18, dp+19);
}
fclose(fp}:
GET HOSTNAME */

gethostname (hn, 64);

READ PARTITION DATA SET NAME OF THE E AND H FIELD */

if ((fpd=fopen(argv([3],”rb”)) == NULL)

{
printf (“Cannot open datapool file: %s; Program terminated.\n”, argv(3]);
exit(2);

fread((void *) (dseht+6), sizeof(char), 80, fpd);
fseek(fpd, 0L, SEEK_END) ;

nds = (ftell(fpd) - 80)/(1l3*sizeof_double):;

ib = (int) strlen(dseht);

READ IN SEGMENT LENGTH AND COORDINATE OF OBSERVATION POINT */

while ((index=getind(nds, findex, hn)) > 0)

{
fseek(fpd, 80 + (index-1)*13*sizeof_double, SEEK_SET);
fread((void *) hdr.hdd, sizeof_double, 13, fpd);

dl = hdr.hdd[o0];
isl = (41 + dlmin / 2.) / dlmin;

printf (“%10d:%g(%+20.13e,%+20.13e,%+20.13e)\n", index, dl, ro{0],
ro[l], rol2]);
fflush(stdout) ;

DETERMINE THE STARTING TIME */

isb = (isl + 1) >> 1;

isgx = 1;

Appendix A
if (rof0}] < 0.) isgx = -1;
rs[0] = isgx * ((isb << 1) - 1) * (dlmin / 2.);
rip2 = ro[0}] - rs[0];
rlp3 = ro[2] - al;

tehs = sqrt(rlp2 * rlp2 + ro[l] * ro[l] + rilp3 * rlp3) / ¢ + isb * cup;
/* INITIALIZE EH ARRAY */
for (dp = eh, i = 0; i < MAXEH; ++i) *dp++ = 0.;

/* CALCULATE E AND H FIELD */

for (is = isb; is <= MAXSH; is += isl) {
tcs = is * cup;
tcrs = ((MAXS - is << 1) + 1) * cup;
sn0 = is - 1;
snl = is;
rn0 = MAXS2 - (is - 1);:
rnl = MAXS2 - is;
for (isgz = isgl[2]: isgz >= isgl3]; isgz += -2) {
for (isgx = isgl[0]; isgx >= isg[l]; isgx += -2) {
rs[0] = isgx * ((is << 1) - 1) * (dlmin / 2.);
rs[2] = isgz * al; .
rl(0] = ro(0] ~ rslO0}:
rl[l] = rol(l] - rs[l];
rl[2] = ro[2] - rs[2}];
rl1(3] = sqrt(rl[0] * rl[0] + rl[l] * rl([l1l] + xrl(2] * rl(2]);
retard = rl[3] / ¢ + tcs - tehs;

its = retard / dt + 1.;
for (it = its; it <= MAXT; ++it) {
tr = it * dt - retard;

current (is, tr, &cu, &cud, &cvo);

r1[31 * ri[3];
rlp3 rl(3] * rilp2;
xor = rl[0] / r1l([31];
XOorp2 = XOr * Xxor;

dp = &eh[it*8];

rlp2

etc = isgz * zoodpi * d1 * (cud / ¢ / rl[3] + cu / rlp2 *
3. + ¢ * ¢cvo / rlp3 * 1.5);
*dp++ += isgz * zoodpi * dl * (cud / ¢ / rl[3] *
(xorp2 - 1.) + (cu / rlp2 +
cvo / 2. * ¢ / rlp3) * (xorp2 * 3. - 1.) });
*dp++ += rl1([1l]) / rl[3] * xor * etc;
*dp++ += rl[2] / rl[3] * xor * etc;

hte = isgz * dl * (cud / ¢ / rl{3] + cu / rlp2)/(pi * 4.);
++dp;

*dp++ -= rl[2]) / r1l[3] * htc;

*dp += r1{l1l] / rl[3] * htc:;

17

Appendix A

/*

18

CALCULATE THE FIELD CONTRIBUTE BY THE SLANT PARTS */
rs(2] = 0.;
rot{l] = roll];
for (; is <= MAXS; is += isl) .
{
tcs = is * cup;
tcrs = ((MAXS - is << 1) + 1) * cup; -
sn0 = is - 1;
snl = is;
rn0 = MAXS2 - (is - 1);
rnl = MAXS2 - is;
for (isgz = isg([2]; isgz >= isgl3]; isgz += -2)
{
for (isgx = isg([0]; isgx >= isg[l]; isgx += -2)
{
ros{0) = ro[0] - isgx * oxt;
ros[2] = rol2] - 1isgz * ozt;
rot[0] = cosa * ros([0] - isgx * isgz * sina * ros(2];
rot[2] = isgx * isgz * sina * ros{0] + cosa * ros([2];
rs[0] = isgx * ((is - MAXSH << 1) - 1) * (dlmin / 2.);
rl{0] = rot[0] - rs[0];
ri[l] = rot[l] - rs(l]:
rl[2] = rot[2] - rs[2};
rl(3) = sqrt(rl(0] * rl([0] + rl([1} * rl[1] + xrl[2] * xl[2]);
retard = rl1[3] / ¢ + tcs - tehs;
its = retard / dt + 1.;
for (it = its; it <= MAXT; ++it)
{
tr = it * dt - retard;
current (is, tr, &cu, &cud, &cvo);
rip2 = r1[3] * rl([3];
rip3 = rl([3] * rlp2;
xor = rl([0] / rl[3];
X0rp2 = XOr * Xor;
dp = &eh[it*8];
etc = isgz * zoodpi * dl * (cud / ¢ / rl[3] + cu / rlp2 *
3. + ¢ * cvo / rip3 * 1.5);
ehm[0] = isgz * zoodpi * dl * (cud / c / rl[3] *
(xorp2 - 1.) + (cu / rlp2 + -
cvo / 2. * ¢ / rlp3) * (xorp2 * 3. - 1.));
ehm[2] = rl[2] / rl(3] * xor * etc;
*dp++ += cosa * ehm[0] + isgx * isgz * sina * ehm([2]; .
*dp++ += rl1l{l] / r1l{[3] * xor * etc;
*dp++ -= isgx * isgz * sina * ehm[0] + cosa * ehm(2];
htc = isgz * dl * (cud / ¢ / rl(3] + cu / rlp2)/{(pi * 4.);
ehm[5] = rl[1l] / rl[3] * htc;
*dp++ += isgx * isgz * sina * ehm[5];

*dp++ -= rl[2] / rl[3] * htc;
*dp += cosa * ehm(5]};

/* DETERMINE THE MAX VALUES OF E & H FIELDS AND THEIR TIMES */

for

{

for

{

/* SET A

spr

(i = 0; 1 < 8; ++i)
ehm[i] = 0.;
itm[i] = O;

(dp = eh, it = 0; it <= MAXT; ++it)
dp(6] = sqgrt(dpl0) * dpl[0] + dpli] * dpll] + dpl[2] * dpl2]);
dp(7] = sqrt(dpl(3] * dpl[3] + dpl[4] * dpl4] + dp[5] * dpl51);
for (i = 0; i < 6; ++dp, ++1i)

{
if (fabs(*dp) > fabs(ehm([i]))
{
ehm([i] = *dp;
itm[i] = it;
}
}
for (i = 6; i < 8; ++dp, ++i)
{
if (*dp > ehm[i])
{
ehm{i] = *dp;
iem[i] = it;
}
}
DATA SET NAME FOR E AND H FIELD */

intf (dseht+ib, "%$cz%+20.13e%cy%+20.13e%cx%+20.13e”, spc, ro[2],

spc, ro[l}l, spc, rol0]);

memmove { (void *) hdr.hdd, (void *) &hdr.hdd([1], 6*sizeof_double);

memmove ((void *) &hdr.hdd[(8], (void *) &hdr.hdd[7], 6*sizeof_double);
hdr.hdd(é} = d1;
hdr.hdd[7] = dt;
hdr.hdd[14] = tehs;
hdr.hdd[(15] = air;
/* WRITE E AND H FIELD TO FILE */

if
{

((fp=fopen(dseht+6, "wb”)) == NULL)

Appendix A

19

Appendix A

dseht [ib+44] = *\Q’;

/* check if y directory is created or not */
if ((fp=fopen(dseht+6,”r”)) == NULL)
{
dseht [ib+22] = *\0‘;
/* check if z directory is created or not */
if ((fp=fopen(dseht+6,”r”)) == NULL)
{
dseht[ib] = *\0’;
/* check if base directory is created or not */

if ((fp=fopen(dseht+6,”r”)) == NULL)
{
if (system(dseht)) /* create base directory */
{
printf (“*Cannot create directory: %s; \
Program terminated.\n”, dseht+6);
exit(1l);
}
}
else
fclose(fp); /* base directory is already creater */
dseht{ib] = spc;
if (system(dseht)) /* create z directory */
{
printf (“Cannot create directory: %s; \
Program terminated.\n”, dseht+6);
exit(1l);
}
}
else
fclose(fp): /* z directory is already created */
dseht [ib+22] = spc;
if (system(dseht)) /* create y directory */
{
printf (“Cannot create directory: $%s; Program terminated.\n”,
dseht+6) ;
exit(1);
}
}
else
{
dseht[ib+44] = spc;
printf (“Cannot create file: %s; Program terminated.\n”,
dseht+6) ;
exit(1l);
}

20

Appendix A

dseht [ib+44] = spc;

fp = fopen{(dseht+6, "wb”);
}
fwrite({void *) &hdr, sizeof_hdr, 1, fp);
fwrite((void *) eh, sizeof_eh, 1, fp);
fclose(fp):
++nrun;
printf(*%104> %s\n”, nrun, dseht+6);

fclose(fpd) ;
switch (index)
{

case O0:

printf (“Program is successfully completed.\n”);

break;
case -1:
printf(“All processes were instructed to terminate.\n"});
break;
case -2:
printf (“Program was instructed to terminate.\n”);
break;
case -3:
printf (*Cannot obtain index file: %s; Program terminated.\n”, findex);
break;
default:
printf (“Program abnormally terminated with index = %d\n", index) ;
}
}
/o SUBROUTINE CALCULATE THE DIPOLE’S */
/** CURRENT, */
/* CURRENT DERIVATIVE, */
/** CONVOLUTION OF SIGN FUNCTION AND CURRENT */
int current{int ns, double ts, double *y, double *yd, double *yco)
{
int 1lr;
double ys, ysd, ysco, t;
extern int curdis(int, int, double, double, double *, double *, double *);
lr = 0;
. curdis(ns, 1lr, snl, ts, &ys, &ysd, &ysco);
t = ts + cup;
curdis(ns, lr, sn0, t, y, yd, yco):
*y -= ys;
*yd -= ysd;
*yco -= YSCO;

21

Appendix A

/* REFLECTION CURRENT IS NOT EMERGING */
if ((t=ts-tcrs)<=0.) return O0;
/* REFLECTION CURRENT */
Ir = 12;
curdis(ns, 1r, rnC, t, &ys, &ysd, &ysco);
*y += ys;
*yd += ysd;
*YCO += YSCO;
t += cup;
curdis(ns, lr, rnl, t, &ys, &ysd, &ysco);
XYy -= ¥s;
*vd -= ysd;
*yCco -= ysco;
return 0;
} /* current */
/** SUBROUTINE CALCULATES CURRENT PARAMETERS
int curdis(int ns, int ir, double sn, double t,
double *ys, double
{
register double *dp;
double aa, ab, ac, ad, pd, af;
double ea, eb, ec, ed, edp,ef;
double ar, er;
/* AA = CO(O+IR,NS) */
/* AB = CO(1+IR,NS) */
/* AC = CO(2+IR,NS) */
/* AD = CO{ 3+IR,NS) */
/* PD = CO(4+IR,NS) */
/* AF = CO(S5+IR,NS) */
/* EA = CO(6,NS) */
/* EB = CO(7,NS) */
/* EC = CO(8,Ns) */
/* ED = CO(9,NS) */
/* EDP = CO(10,NS) */
/* EF = CO(1l,NS) */
/* RA = CO(12,NS) */
/* RB = CO(13,NS) */
/* RC = CO(14,NS) */
/* RD = CO(15,N8) */
/* PDR = CO(16,NS) */
/* RF = CO(17,N8) */
/* AR = CO(1l8,NS) */
/* ER = CO(19,Ns) */
22

* *

*/

*ysd, double

*ysco)

/* CURRENT DISTRIBUTION */

dp = &co[ns*20);

aa = *(dp + 0 + ir);

ab = *(dp + 1 + 1ir);

ac = *{dp + 2 + ir);

ad = *{(dp + 3 + 1ir);

pd = *{(dp + 4 + ir);

af = *(dp + 5 + 1ixr);

ea = *{dp + 6);

eb = *{(dp + 7);

ec = *(dp + 8);

ed = *(dp + 9):

edp = *(dp +10);

ef = *{dp +11);

ar = *{(dp +18);

er = *{dp +19);

*ys = exp{(- sn * cuc) * (aa
ab
ac
af

2. * ad

* expl(ea * t) +
* exp(eb * t) +
* explec * t) +
* expl(ef * t) +
* exp(ed * t) * cos{edp * t + pd)

/* DERIVATIVE OF CURRENT DISTRIBUTION */

*ysd = exp(- sn * cuc) * (aa
ab
ac
af
2.

(ed * cos(edp * t

/* CONVOLUTION OF SGN(T) AND I(T)

*ysco = exp(- sn * cuc) * (aa

ab * (2. * exp(eb * t) -1.) / eb
ac * (2. * exp(ec * t) -1.) / ec
af * (2. * exp(ef * t) -1.) / ef

* exp(ea * t) * ea +

* exp(eb * t) * eb +

* explec * t) * ec +

* exp(ef * t) * ef +

* ad * expled * t) *
+ pd) - edp * sin(edp * t + pd))
*/

* (2. * explea * t) -1.) / ea +

+ o+ o+

2. * ad * (2. * expf(ed * t) *

(ed * cos({edp *
ed * cos({(pd)
(ed * ed + edp

if (ir == 0) return 0;

*ys += exp(- sn * cuc) * ar
*ysd += exp(- sn * cuc) * ar
*ysco += exp(- sn * cuc) * ar
return 0;

} /* curdis */

t + pd) + edp * sin(edp * t + pd)
- edp * sin(pd)
* edp))

* expler * t);
* expler * t) * er;
* (2. * exp(er * t) -1.) / er;

Appendix A

23

Appendix A

/* FUNCTION getind
TO OBTAIN INDEX FOR DATA POOL
*/

#include <unistd.h>
#include <fcntl.h>

#ifdef _H_FCNTL

#include <sys/lockf.h>
#define O_RDWR 2
#endif

int getind(int nds, char *fn, char *hn)
{

struct { char name([64}; int ext;} hst{25];
int f£d, i,3j, index, sflag, try;

FILE *fp;

try = 0;

fp = fopen(fn, “r+");
fd = fp->_file;
while (lockf(fd, F_TLOCK, 0L) < 0)
{
if(++txry > 26)
{
fclose (fp);
return -3;
}
sleep((try>5)?5:try);
}
fscanf (fp, “%d %4”, &index, &sflag);
if (index >= nds)
index = 0;

else if (sflag)

sflag = -1;
else
{

i = 0;

while (fscanf(fp, “%s %d“, hst[il].name, &hst([i].ext)
{

if (strcmp(hst[i).name,hn) == 0)
{
sflag = -2;
if (-hst[i].ext == 0) -i;
}
++41;
}
if (sflag == 0)
++index;

freopen(fn, “w+”, fp);
fprintf (fp, “%10d4d %5d\n”, index, 0);
for (j=0; j < 1i; ++3)

24

EOF)

fprintf (fp, “%-64s %3d\n”,

}
fclose(fp);

return sflag ? sflag : index;

hst[j}.name,

hst{j].ext);

Appendix A

25

Appendix B. LINPACK Benchmarking of Workstations

Table B-1. Average
rolled and unrolled
performance for an
SGI 4D/35 system.

Table B-2. Average
rolled and unrolled
performance for an
SGI 4D/440 system.

The performance of processors in the Electromagnetic Effects Modeling
System (EeMS) was benchmarked with the LINPACK benchmark.
LINPACK is an industry benchmark that measures the floating-point per-
formance of computer systems. The LINPACK benchmark in the C pro-
gramming language was used, since this electromagnetic application was
written entirely in the C language. The LINPACK code, linpack.c, was ob-
tained from the netlib.att.com machine on the Internet. The benchmark
used 15-digit double precision (8-byte representation) and 200 by 200 array
elements, which required 315 kbytes of system RAM (random access
memory). The LINPACK benchmark was submitted to processors in batch
mode during a period of light user activity. Tables B-1 to B-4 present the
results of LINPACK benchmarking on four different types of workstations
in the EeMS.

The tables also list the time percentage of the overhead and two main rou-
tines of the benchmark program, DGEFA and DGESL, in which the major-
ity of floating-point operations are performed. The DGEFA function is
used to factor a double precision matrix by the use of Gaussian elimina-
tion. The DGESL function is for solving the double precision system
(AX =B or ATX = B).

Reps Time (s) DGEFA DGESL Overhead Kflops

(%) (%) (%)
2 0.79 86.08 3.80 10.13 3868.545
4 1.58 87.34 3.80 8.86 3814.815
8 3.13 88.18 2.56 9.27 3868.545
16 6.31 87.16 3.01 9.83 3861.746
32 12.58 87.04 3.02 9.94 3878.788

Reps Time (s) DGEFA DGESL Overhead Kflops

(%) (%) (%)
2 0.71 85.92 2.82 11.27 4359.788
4 1.40 87.86 2.14 10.00 4359.788
8 2.83 87.28 2.83 9.89 4308.497
16 5.64 87.23 3.01 9.75 4316.961
32 11.29 86.71 3.28 10.01 4325.459

27

Appendix B

Table B-3. Average
rolled and unrolled
performance for an
IBM RS/6000-530
system.

Table B-4. Average
rolled and unrolled
performance for an
IBM RS/6000-560
system.

28

Reps Time (s) DGEFA DGESL Overhead Kflops
(%) (%) (%)
4 0.57 84.21 0.00 15.79 11444444
8 1.15 75.65 7.83 16.52 11444 444
16 2.34 81.62 1.71 16.67 11268.376
32 461 82.21 1.74 16.05 11355.728
64 9.20 76.85 1.20 21.96 12241.411
128 18.50 78.49 2.81 18.70 11687.943
Reps Time(s) DGEFA DGESL Overhead Kflops
(%) (%) (%)
8 0.58 82.76 0.00 17.24 22888.889
16 1.15 82.61 0.87 16.52 22888.889
32 2.30 75.65 1.74 22.61 24689.139
64 4.61 80.48 3.47 16.05 22711.456
128 9.21 82.41 141 16.18 22770.294
256 18.40 79.08 4.73 16.20 22799.827

Appendix C.

Table C-1. EM
application
benchmarking
recorded using file
time stamp.

Table C-2. Average
execution time for one
data set.

Application Benchmarking of Workstations

The electromagnetic (EM) application program named “clob” was bench-
marked on the four types of workstations in the Electromagnetic Effects
Measurement System (EeMS): SGI 4D/35, SGI 4D /440, IBM RS/6000-530,
and IBM RS/6000-560. On each system, the benchmark program used the
same input data sets, which were based on three typical observation
points. The benchmark tests were executed during a period in which few
or no other user’s jobs were being run, such as at night or on the weekend.
The total execution time on each system was computed in two ways: one
based on the time stamp on files and the other based on the UNIX “timex”
command. The average execution time for one data set is determined
based on the total execution time of all three data sets. These two methods
produced average execution times that were very close. In the analysis of
the distributed computing technique (DCT), the average execution time
based on the UNIX “timex” command was used, but the fractions of sec-
onds were discarded.

Execution time of benchmark on

Benchmark data SGI SGI IBM IBM
(data point) 4D/35 4D /440 RS/6000-530 RS/6000-560
(0,50,20) 10:06:32 9:15:02 7:17:39 3:36:55
(1000,0,300) 11:10:54 10:13:34 8:01:16 3:58:33
(100,100,100) 10:40:50 9:45:19 7:40:22 3:48:08
Average execution time of benchmark on
Computed SGI SGI IBM IBM

based on 4D/35 4D/440 RS/6000-530 RS/6000-560

file time stamp 10:39:25.33 9:44:38.33 7:39:45.67 3:47:52.00

timex command 10:39:25.78 9:44:28.89 7:39:45.47 3:47:52.13

29

Distribution
Admnstr US Army Natick RDEC
Defns Techl Info Ctr Attn SATNC-SUSD-SHD A Murphy

Attn DTIC-OCP

8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Dir

Defns Intlignc Agcy

Attn RTS-2A Techl Lib
Washington DC 20301

Defns Nuc Agcy

Attn RAEE Elect Effects Div
6801 Telegraph Rd
Alexandria VA 22310-3398

Cmdr

US Army ARDEC

Attn AMSTA-AR-AEC-IE N Svendsen
Attn AMSTA-AR-CCL-D W Williams
Bldg 65 N

Picatinny Arsenal NJ 07806-5000

US Army AVRDEC

Attn AMSAT-R-EFM P Haselbauer
4300 Goodfellow Blvd

ST Louis MO 63120-1798

US Army BRDEC

Attn SATB-FGE J Ferrick
Attn SATB-FGE T Childers
FT Belvoir VA 22060-5606

US Army Matl Cmnd

Attn AMCAM-CN

5001 Eisenhower Ave

Alexandria VA 22333-0001

Dir

US Army Mis Cmnd (USAMICOM)

Attn AMSMI-RD-CS-R Documents
Redstone Arsenal AL 35898-5400

Cmdr

US Army MRDEC

Attn AMSMI-RD-ST-CM J Vandier
Huntsville AL 35898-5240

Kansas Stret
Natick MA 01760-5018

US Army Nuc & Chem Agcy
Attn MONA-NU R Pfeffer
Attn MONA-TS Lib

7150 Heller Loop Rd Ste 101
Springfield VA 22150

US Army TARDEC
Attn AMSTA-ZT G Baker
Warren MI 48397-5000

US Army TECOM

Attn STERT-TE-E J Knaur
Redstone Technical Test Center
Huntsville AL 35898-8052

US Army TECOM Techl Dir Ofc
Attn AMSTE-TC-D R Bell
Aberdeen Proving Ground MD 21005

Cmdr

US Army White Sands Missile Range

Attn STEWS-NE J Meason

White Sands Missile Range NM 88002-5180

Nav Rsrch Lab

Attn Code 4820 Techl Info Div
4555 Overlook Ave SW
Washington DC 20375-5000

Cmdr

Nav Surfc Weapons Ctr
Attn Code E231 Techl Lib
Dahlgren VA 22448-5020

Natl Inst of Stand & Techlgy
Attn V Ulbrecht Rsrch Info Ctr
Rm EO1 Bldg 101

Gaithersburg MD 20899

31

Distribution

DoD Joint Spectrum Ctr
Attn CA J Word

120 Worthing Basin
Annapolis MD 21401

US Army Rsrch Lab
Attn AMSRL-SL-CM M Mar
Aberdeen Proving Ground MD 21005-5068

US Army Rsrch Lab
Attn AMSRL-OP-SD-TA Mail & Records
Mgmt
Attn AMSRL-OP-SD-TL Tech Library
(3 copies)
Attn AMSRL-OP-SD-TP Tech Pub (5 copies)
Attn AMSRL-WT-N Chf

32

US Army Rsrch Lab (cont’d)

Attn AMSRL-WT-NB Chf

Attn AMSRL-WT-ND B Luu (5 copies)
Attn AMSRL-WT-ND Chf

Attn AMSRL-WT-ND R J Chase
Attn AMSRL-WT-ND W O Cobum
Attn AMSRL-WT-NE Chf

Attn AMSRL-WT-NF Chf

Attn AMSRL-WT-NG Chf

Attn AMSRL-WT-NH Chf

Attn AMSRL-WT-NJ Chf

Attn AMSRL-WT-N Sr Rsrch Scntst
Attn AMSRL-SC-A S Choy
Adelphi MD 20783-1197

